InterPlanetary Network Directorate
Deep Space Mission Systems

MODULATION
TECHNIQUES
for
BANDWIDTH
EFFICIENCY

Presented by:
WARREN L. MARTIN

DENNIS LEE
TSUN-YEE YAN

27 MARCH 2003

MODULATION TECHNIQUES HISTORY OF CCSDS BANDWITH-EFFICIENT STUDIES

- 1990-91 NEAR LOSS OF 2 GHz BAND TO PCS INDUSTRY CAUSES CONCERN
- 1992 SPACE FREQUENCY COORDINATION GROUP (SFCG) ASKS CCSDS RF & MODULATION SUBPANEL TO RECOMMEND IMPROVED MODULATION METHODS
 - INTERNATIONAL EFFORT MOUNTED TO STUDY BANDWIDTH-EFFICIENT MODULATION
- 1993-94 PHASES 1 & 2: ASSESSED COMMON MODULATION SCHEMES & FILTERING
- 1997 PHASE 3: STUDIED SEVERAL MODULATION TYPES BOTH COMMON & NEW
 - PCM/PM/NRZ PCM/PM/Bi-Ph BPSK QPSK OQPSK
 - MSK 8-PSK GMSK FQPSK-B 4D 8PSK TCM (CNES 98)
 - FOUND BASEBAND FILTERING IMPROVED BANDWIDTH-EFFICIENCY BY MANY TIMES
 - QUANTIFIED END-TO-END LOSSES, TRELLIS DEMOD. REDUCES GMSK & TOQPSK LOSSES
- 1997 SFCG ADOPTS REC. 17-2 SPECTRUM MASK (MODIFIED TO 17-2R1 IN 1998)
- 1999 PHASE 4: EXPLORED SUCEPTIBILITY TO INTERFERENCE, FOUND:
 - INTERFERENCE SUSCEPTIBILITY DETERMINED BY RECEIVER'S MATCHED FILTER
- SFCG MASK RECOMMENDATION MODIFIED AGAIN IN 2001, NOW REC. 21-2R1
 - SUBSTANTIALLY SAME MASK AS IN REC. 17-2R1
- CCSDS ADOPTED MODULATION RECOMMENDATIONS IN JUNE 2001
 - 401 (2.4.17A) B-1 (CAT A), 401 (2.4.17B) B-1 (CAT B), AND 401 (2.4.18) B-1 (EES)
 - FOCUS WILL BE ON 401 (2.4.18) B-1 FOR EES MISSIONS; 4D 8-PSK TCM

MODULATION TECHNIQUES SFCG SPECTRAL EMISSION MASK (Rec.21-2R1)

MODULATION TECHNIQUES 4D 8-PSK TCM SYSTEM IMPLEMENTATION, 2.5 Bits/Hz

MODULATION TECHNIQUES 4D 8-PSK SPECTRA (CCSDS Rec. 401 (2.4.18) B-1)

CCSDS RECOMMENDATION 401 (2.4.18) B-1, SIMULATION IN NON-LINEAR CHANNEL Applicable to 8025 - 8400 MHz Band (see SFCG Recommendation 21-2R1)

MODULATION TECHNIQUES SYSTEM PERFORMANCE

- END-TO-END LOSSES COMPUTED RELATIVE TO IDEAL UNCODED BPSK
 - 4D 8-PSK TCM SELECTED BY CCSDS FOR LOW END-TO-END LOSSES AT 2.0 & 2.25 b/Hz
 - HOWEVER, BANDWIDTH EFFICIENCY IS NOT OUTSTANDING AT THESE EFFICIENCIES

BANDWIDTH EFFICIENCY (bits/Hz)	4D 8-PSK TCM PERFORMANCE				
	4D 8-PSK TCM (No Add'l Coding) ¹		4D 8-PSK TCM with RS 255, 239 Coding ²		
	End-to-End Gain ³ (dB)	Reqd. E _B /N ₀ (dB)	End-to-End Gain ³ (dB)	Reqd. E _B /N ₀ (dB)	
2.00	2.8	6.8	5.2 ³ (1.8) ⁴	5.3	
2.25	2.1	7.5	-	-	
2.50	1.2	8.4	3.1 ³ (3) ⁴	7.4	
2.75	-0.2	9.8	-	-	

NOTES:

- Performance at BER = 1 x 10⁻⁵; obtained by simulation employing model for fully saturated ESA power amplifier.
 Performance at BER = 1 x 10⁻⁵; fully saturated ESA power amplifier; RS interleave depth = 5.
- 3. Gain Computed relative to ideal uncoded BPSK.
- Gain Computed relative to ideal BPSK with Convolutional (r=½, k=7) + RS (255, 223) coding.
- INTERFERENCE SUSCEPTIBILITY DETERMINED BY RECEIVER'S FILTER
 - NO CNES MEASUREMENTS FOUND FOR THIS MODULATION TYPE

BACKUP

MODULATION TECHNIQUES MODULATION SPECTRA, CATEGORY A SR MISSIONS

CCSDS REC. 401 (2.4.17A) B-1 MODULATION SPECTRA WITH SATURATED SSPA

MODULATION TECHNIQUES SYSTEM PERFORMANCE, CATEGORY A SR MISSIONS

- TRELLIS DEMODULATION CAN BE USED TO REDUCE END-TO-END LOSSES
- LOSSES BASED ON RECEIVER MATCHED FILTER

MODULATION TYPE (Name)	END-TO-END PERFORMANCE 1				
	No Additional Coding ²		With Convolutional + RS 255, 223 Coding ³		
	End-to-End Loss 4 (dB)	Reqd. E _b /N ₀ (dB)	End-to-End Gain 4 (dB)	Reqd. E _b /N ₀ (dB)	
GMSK (BT = 0.25)	- 0.4	10.0 dB	7.8 ⁴ (- 0.15) ⁵	2.7 dB	
GMSK (BT = 0.50)	- 0.1	9.7 dB	7.9 ⁴ (- 0.05) ⁵	2.6 dB	
FQPSK-B	- 0.8	10.4 dB	7.6 ⁴ (- 0.35) ⁵	2.9 dB	
SRRC OQPSK (α=0.5)	- 0.9	10.5 dB	7.7 ⁴ (- 0.25) ⁵	2.8 dB	

NOTES:

- 1. Performance obtained by simulation employing model for fully saturated ESA power amplifier.
- 2. Receiver type = trellis demodulation for GMSK and FQPSK, matched filter detection for SRRC OQPSK; BER = 1 x 10⁻⁵
- 3. Receiver type = quasi-matched filter filter; 3-bit Viterbi metric quantization; BER = 1 x 10⁻⁶
- 4. Losses computed relative to ideal uncoded BPSK.
- 5. Losses computed relative to ideal BPSK with Convolutional (r=½, k=7) + RS (255, 223) coding.
- INTERFERENCE SUSCEPTIBILITY DETERMINED BY RECEIVER'S FILTER
 - EVALUATED BOTH NARROWBAND (SINGLE TONE) & WIDEBAND (BPSK) INTERFERORS
 - FOR EQUAL VICTIM INTERFEROR POWER LEVELS
 - NARROWBAND VICTIM LOSSES < 0.5 dB AT ± 0.5 R_B
 - WIDEBAND VICTIM LOSSES < 0.5 dB AT ± 1.2 R_B

MODULATION TECHNIQUES MODULATION PERFORMANCE, CATEGORY A SR MISSIONS

MEASURED IMPLEMENTATION LOSS

(RELATIVE TO IDEAL BPSK)

JPL BLOCK V RCVR, 99% POWER BANDWIDTH, INTEGRATE & DUMP FILTER UNCODED BER = 1 x 10⁻³

MODULATION TECHNIQUES REFERENCES

- WEB SITES CONTAINING USEFUL INFORMATION
 - JPL INTERPLANETARY NETWORK, DSMS, FUTURE MISSION PLANNING OFFICE AT:
 - http://deepspace.jpl.nasa.gov/advmiss/index.html
 - CCSDS PUBLICATIONS AT:
 - http://www.ccsds.org/publications.html
 - SFCG AT:
 - http://www.sfcgonline.org/
- DOCUMENTS
 - Proceedings of the CCSDS RF and Modulation Subpanel 1E Meeting of May 2001
 Concerning Bandwidth-Efficient Modulation. Yellow Book. Issue 2. June at:
 - http://www.ccsds.org/CCSDS/recent.jsp
 - CCSDS RECOMMENDATIONS AND REPORTS AT:
 - http://www.ccsds.org/CCSDS/recommandreports.jsp
 - SFCG HANDBOOK AT:
 - http://www.sfcgonline.org/handbook/index.shtml